Rumus Mean Median Modus Data Kelompok
Rumus Mean Median Modus adalah bahasan materi statistika mengenai analisis ukuran pemusatan data. Prinsipnya, cara mencari mean median modus data kelompok secara garis besar sama dengan data tunggal. Mean atau rata-rata adalah hasil jumlah seluruh data per banyak dara. Median adalah nilai tengah dari data yang telah diurutkan dari paling kecil ke besar. Dan modus adalah nilai yang paling sering muncul atau nilai dengan frekuensi paling tinggi.
Nilai mean, median, dan modus pada data tunggal cukup mudah dilakukan dengan perhitungan yang cukup sederhana dan mengasyikkan. Namun pada data kelompok terdapat rumus mean median modus untuk mengetahui nilai mean, median, dan modus. Hal ini dikarenakan data kelompok disajikan dalam bentuk kelas-kelas sehingga tidak mewakili data satu per satu. Secara umum, rumus mean median modus sesuai dengan tiga persamaan di bawah.
Baca Juga: Ukuran Penyebaran Data (Jangkauan – Hamparan – Kuartil)
Lalu bagaimana cara mendapatkan nilai mean median modus data kelompok? Bagaimana bentuk rumus mean median modus data kelompok? Sobat idschool dapat mencari tahu jawabanya melalui ulasan di bawah.
Table of Contents
Penyajian Data Kelompok
Sebelumnya, akan dijelaskan dulu tentang bentuk penyajian data kelompok. Pengantar data kelompok menjadi cukup penting karena di dalamnya terdapat istilah dari nilai yang digunakan untuk mencari nilai mean, median, dan modus. Banyaknya data yang diperoleh dari sebuah penelitian, sering disajikan dalam data kelompok. Hal ini dikarenakan agar data yang disajikan lebih sederhana dan mudah untuk dibaca atau dianalisis.
Data berkelompok dapat disajikan dalam bentuk tabel distribusi frekuensi, diagram batang, dan lain sebagainya. Agar pembahasan tidak terlalu panjang, akan diambil dua contoh bentuk penyajian data yaitu data bentuk tabel dan data bentuk diagram batang. Penyajian data bentuk lainnya dapat dilihat melalui penyajian data kelompok (histogram, poligon, dan ogive).
Sekarang, perhatikan penjelasan tentang data kelompok dalam bentuk tabel dan diagram batang berikut.
Penyajian data kelompok dalam bentuk tabel:
Berikut ini adalah penyajian tabel data kelompok beserta keterangan yang meliputi batas/tepi bawah kelas (Tb), frekuensi (f) setiap kelas, dan panjang kelas (p).
Penyajian data dalam bentuk diagram batang:
Berikut ini adalah penyajian diagram batang data kelompok beserta keterangan yang meliputi batas/tepi bawah kelas (Tb), frekuensi (f) setiap kelas, dan panjang kelas (p).
Baca Juga: Baca Juga: Penyajian Data Dalam Bentuk Ogive Positif dan Ogive Negatif
Selanjutnya, sobat idschool dapat mempelajari bagaimana rumus mean median modus data kelompok dan bagaimana cara menggunakannya.
Rumus Mean (Rata-rata) Data Kelompok
Inti dari menentukan nilai rata-rata dari suatu data kelompok sama dengan mencari nilai rata-rata data tunggal. Idenya adalah menjumlahkan semua data kemudian membagi dengan banyaknyanya data. Hanya saja, karena penyajian data kelompok diberikan dalam bentuk berbeda, maka rumus mencari nilai mean untuk data kelompok sedikit berbeda dengan cara mencari nilai mean pada data tunggal.
Rumus mean data kelompok dinyatakan dalam persamaan di bawah.
Keterangan:
* x̄ = rataan hitung dari data kelompok
* fi = frekuensi kelas ke-i
* xi = nilai tengah kelas ke-i
Perhatikan data pada tabel berikut!
Nilai mean (rata-rata) dari data pada tabel tersebut adalah ….
A. 60,75
B. 61,75
C. 62,75
D. 63,75
E. 64,75
Pembahasan:
Untuk menentukan rata-rata dari suatu kelompok, kita membutuhkan nilai tengah dari masing-masing kelas. Nilai tengah dari masing-masing kelas dapat diperoleh menggunakan rumus berikut.
Nilai tengah masing-masing kelas adalah sebagai berikut.
* x1= (40,5 + 30,5)/2= 71/2= 35,5
* x3= (60,5 + 50,5)/2= 111/2= 55,5
* x4= (70,5 + 60,5)/2= 131/2= 65,5
* x5= (80,5 + 70,5)/2= 151/2= 75,5
* x6= (90,5 + 80,5)/2= 171/2= 85,5
Hasil perkalian nilai tengah masing-masing kelas dan frekuensinya dapat dilihat pada tabel berikut.
Sehingga nilai rata-rata atau mean data kelompok dapat diperoleh melalui perhitungan di bawah.
Jadi, nilai mean dari data yang diberikan pada soal adalah 61,75.
Jawaban: B
Baca Juga: Kumpulan Berbagai Bentuk/Tipe Soal dan Cara Menghitung Median Data Kelompok
Median adalah data tengah dari data yang telah diurutkan dari kecil ke besar atau rendah ke tinggi. Pada data tunggal, nilai mediannya dapat diperoleh dengan mengurutkan datanya kemudian mencari data yang terletak di tengah. Hampir sama dengan cara mencari median pada data tunggal, nilai median pada data kelompok juga merupakan nilai tengah dari suatu kumpulan data.
Karena penyajian data disajikan dalam bentuk kelompok, data pasti dari data terurut tidak dapat diketahui secara pasti. Oleh karena itu, perlu menggunakan rumus median data kelompok untukmengetahui pendekatan nilai median dari bentuk penyajian data kelompok. Langkah pertama untuk mencari nilai median data kelompok adalah mengetahui dimana letak kelas yang terdapat nilai median. Letak median dapat diketahui pada data ke-n/2 yaitu data dengan frekuensi komulatif yang nilainya kurang dari dan paling mendekati n/2. Setelah mengetahui di mana letak kelas median, selanjutnya melakukan perhitungan dengan rumus median data kelompok untuk mendapatkan nilai median.
Bentuk rumus median data kelompok diberikan seperti berikut.
Keterangan:
* Tb = tepi bawah kelas median
* n = jumlah seluruh frekuensi
* fk = jumlah frekuensi sebelum kelas median
* fi = frekuensi kelas median
* p = panjang kelas interval
Seringkali, data kelompok dibagi menjadi empat bagian yang sama banyak. (kuartil) Pembagian data kelompok menjadi empat sama banyak ini dipisahkan oleh tiga nilai kuartil yaitu kuartil atas (Q1), kuartil tengah (Q2), dan kuartil bawah (Q3). Median adalah data ke-n yang membagi banyak data menjadi dua sama banyak. Begitu juga dengan kuartil tengah (Q2). Sehingga, nilai kuartil tengah (Q2) akan sama dengan median.
Baca Juga: Rumus Kuartil, Desil, dan Persentil
Perhatikan data pada tabel berikut!
Nilai median dari data pada tabel tersebut adalah ….
A. 60,32
B. 61,22
C. 61,32
D. 62,22
E. 62,32
Pembahasan:
Jumlah data yang diberikan pada tabel adalah 40. Sehingga letak Median (Q2) berada pada data ke: Q2 = ½ × 40 = 20 (Letak median berada di data ke-20). Sebelum menentukan nilai mediannya, kita tentukan frekuensi kumulatif kurang dari dan letak kelas di mana terdapat data median. Gunakan tabel yang diberikan pada soal.
Berdasarkan data pada tabel di atas, dapat diperoleh informasi seperti berikut.
* Batas/tepi bawah kelas median: Tb = 61 – 0,5 = 60,5
* Panjang kelas: p = 10
* Frekuensi komulatif kurang dari kelas median: fkk = 18
* Frekuensi kelas median: fi = 11
Menghitung nilai median data kelompok:
Jadi, nilai mediannya adalah 62,32.
Jawaban: D
Baca Juga: Kumpulan Berbagai Bentuk Soal dan Cara Menghitung Median Data Kelompok
Rumus Modus Data Kelompok
Pengertian modus adalah nilai data yang paling sering muncul atau data yang mempunyai nilai frekuensi paling tinggi. Cara mencari nilai modus pada data tunggal sangat mudah, sobat idschool hanya perlu mencari data dengan frekuensi paling banyak.
Cara mencari nilai modus data kelompok tidak semudah mencari nilai modus pada data tunggal. Hal ini dikarenakan penyajian data kelompok yang disajikan dalam sebuah rentang kelas. Sehingga, nilai modus data kelompok tidak mudah untuk langsung didapat.
Untuk mendapatkan nilai modus data kelompok dapat menggunakan sebuah rumus. Rumus modus data kelompok dapat dilihat seperti persamaan di bawah.
Keterangan:
* Tb = tepi bawah kelas modus
* d1 = selisih frekuensi kelas modus dengan frekuensi sebelum kelas modus
* d2 = selisih frekuensi kelas modus dengan frekuensi setelah kelas modus
* p = panjang kelas interval
Baca Juga: Peluang Suatu Kejadian
Contoh 3 – Cara Mencari Modus Data Kelompok
Perhatikan gambar diagram batang di bawah!
Modus dari data yang disajikan pada diagram batang di atas adalah ….
A. 46,0
B. 46,5
C. 47,0
D. 49,0
E. 49,5
Pembahasan:
Dari diagram diketahui modus ada pada interval 45 – 49, sehingga
Tb = 45 – 0,5 = 44,5
d1 = 12 – 8 = 4
d2 = 12 – 6 = 6
Maka nilai Modus (Mo) dari data tersebut adalah:
Jadi, modus dari data yang disajikan pada diagram batang di atas adalah 46,5.
Jawaban: B
Baca Juga: Kumpulan Berbagai Bentuk/Tipe Soal dan Cara Menghitung Modus Data Kelompok
Demikianlah pembahasan mengenai rumus mean median modus data kelompok. Meliputi rumus mean data kelompok, rumus median data kelompok, dan rumus modus data kelompok. Terimakasih sudah mengunjungi idschool(dot)net, semoga bermanfaat.
Baca Juga: Cara Mencari Rata-rata Gabungan